摘要
Density Matrix Renormalization Method (DMRG) invented by S. White in 1992 is a quantum many-body computational method for the studies of ground state properties of strongly correlated systems. It has been originally applicable for the computations of ground state properties and energy gap and the exploration of phase diagrams for various strongly correlated systems. Later, it has been further developed for the investigation of thermodynamic properties, dynamics and transport properties, and achieved a great of successes, for which S. White won the Rahman prize of the computational physics. In recent years, the DMRG method is newly developed by introducing tensor product states for the investigation of properties of two dimensional strongly correlated systems. In this talk, I will present an introduction on the DMRG method, those related developments and its applications.
密度矩阵重正化方法是由S. White于1992年提出的一种研究强关联体系基态特性的一种量子多体计算方法。它早期主要应用于一维或准一维强关联体系的基态特性、低能激发态特性和量子相变等。后来,该方法被推广到研究一维或准一维强关联体系的热力学、动力学和输运特性,在不同强关联体系新奇量子效应的前沿研究方面获得了巨大的成功,S. White本人也因此于2003年获得计算物理Rahman奖。近年来,该方法有了新的突破,通过引进了张量乘积态的形式,它可以被用来研究二维的量子关联多体体系。本讲座将介绍密度矩阵重正化方法、技术方法的相关发展,以及在强关联前沿领域的应用举例。